The SAM (sterile alpha motif) domain is a 65- to 70-amino acid sequence found in many diverse proteins whose functions range from signal transduction to transcriptional repression. We show that the SAM domain of the Drosophila Polycomb group protein, polyhomeotic (ph), is capable of binding to itself in vitro. We test a number of near relatives of the ph SAM domain from fruit fly, mouse, and yeast and show that all are capable of self-binding. Heterologous interactions are seen among a subset of SAM domains, including ph, Scm, and RAE28. Several conserved amino acid residues were mutated in the ph SAM domain, and the effects on self-binding and heterologous association were demonstrated. L33, L41, and 162 are shown to be important determinants of the binding interface, while W1 and G50 are likely essential for the structure of the domain.