Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung

Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2991-6. doi: 10.1073/pnas.95.6.2991.

Abstract

Water permeability measured between the airspace and vasculature in intact sheep and mouse lungs is high. More than 95% of the internal surface area of the lung is lined by alveolar epithelial type I cells. The purpose of this study was to test whether osmotic water permeability (Pf) in type I alveolar epithelial cells is high enough to account for the high Pf of the intact lung. Pf measured between the airspace and vasculature in the perfused fluid-filled rat lung by the pleural surface fluorescence method was high (0.019 +/- 0.004 cm/s at 12 degrees C) and weakly temperature-dependent (activation energy 3.7 kcal/mol). To resolve the contributions of type I and type II alveolar epithelial cells to lung water permeability, Pf was measured by stopped-flow light scattering in suspensions of purified type I or type II cells obtained by immunoaffinity procedures. In response to a sudden change in external solution osmolality from 300 to 600 mOsm, the volume of type I cells decreased rapidly with a half-time (t1/2) of 60-80 ms at 10 degrees C, giving a plasma membrane Pf of 0.06-0.08 cm/s. Pf in type I cells was independent of osmotic gradient size and was weakly temperature-dependent (activation energy 3.4 kcal/mol). In contrast, t1/2 for type II cells in suspension was much slower, approximately 1 s; Pf for type II cells was 0.013 cm/s. Vesicles derived from type I cells also had a very high Pf of 0.06-0.08 cm/s at 10 degrees C that was inhibited 95% by HgCl2. The Pf in type I cells is the highest measured for any mammalian cell membrane and would account for the high water permeability of the lung.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood-Air Barrier / physiology*
  • Cell Membrane Permeability / physiology*
  • Cell Separation
  • Epithelial Cells / classification
  • Epithelial Cells / physiology*
  • Flow Injection Analysis
  • Light
  • Male
  • Models, Biological
  • Osmosis / physiology*
  • Perfusion
  • Pleura
  • Pulmonary Alveoli / cytology*
  • Rats
  • Rats, Sprague-Dawley
  • Scattering, Radiation