The mechanism of action of buforin II, which is a 21-amino acid peptide with a potent antimicrobial activity against a broad range of microorganisms, was studied using fluorescein isothiocyanate (FITC)-labeled buforin II and a gel-retardation experiment. Its mechanism of action was compared with that of the well-characterized magainin 2, which has a pore-forming activity on the cell membrane. Buforin II killed Esche-richia coli without lysing the cell membrane even at 5 times minimal inhibitory concentration (MIC) at which buforin II reduced the viable cell numbers by 6 orders of magnitude. However, magainin 2 lysed the cell to death under the same condition. FITC-labeled buforin II was found to penetrate the cell membrane and accumulate inside E. coli even below its MIC, whereas FITC-labeled magainin 2 remained outside or on the cell wall even at its MIC. The gel-retardation experiment showed that buforin II bound to DNA and RNA of the cells over 20 times strongly than magainin 2. All these results indicate that buforin II inhibits the cellular functions by binding to DNA and RNA of cells after penetrating the cell membranes, resulting in the rapid cell death, which is quite different from that of magainin 2 even though they are structurally similar: a linear amphipathic alpha-helical peptide.