Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), members of distinct families of polypeptide growth factors, have been shown to support motoneurons under various in vitro and in vivo conditions. We used a model of motoneuron cell death induced by sciatic nerve section in newborn rats and compared the efficacy of BDNF and GDNF administered alone or simultaneously in order to determine whether combinations of neurotrophic proteins can produce more potent motoneuron rescue than individual factors. The factors were administered by different methods, including (i) a single dose on to the transected nerve, (ii) continuous delivery from implanted slow-release polymer rods (BDNF) or encapsulated cells (GDNF), and (iii) repeated systemic injections (BDNF). Irrespective of the method of administration, either factor alone produced rescue effects which dramatically declined at two weeks as compared to one week post-lesion. In contrast, this decrease was significantly reduced when BDNF and GDNF were used simultaneously provided that one factor was applied on to the nerve while the other was continuously released from the rods or capsules. Other combinations in which GDNF was replaced by ciliary neurotrophic factor or axokine-1 failed to reproduce such additive activity. Two conclusions can be made from these experiments. First, when BDNF and GDNF are administered simultaneously but by distinct routes of delivery, their survival-promoting effects on the injured developing motoneurons are potentiated; second, even continuous delivery of each of these trophic factors alone cannot completely abrogate the time-dependent decline in rescue effects in this model of motoneuron cell death.