The glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) bind similar ligands and target genes in vitro yet have distinct roles in vivo. With a single exception, known mechanisms conferring specificity have been limited to prereceptor mechanisms. These alone cannot account for specificity, particularly at a transcriptional level. These studies aimed to determine whether receptor-specific transcriptional regulation via physiological modulators of cellular signaling pathways, and MR-, as well as GR-specific interactions, could be demonstrated. By comparing modulation of GR- and MR-mediated transactivation in renal LLC-PK1 cells, we have identified several activators of intracellular signaling pathways that discriminate between the GR and the MR and demonstrate that differential regulation occurs at relatively specific points in the signaling pathway. The phosphatase inhibitor, okadaic acid, and the protein kinase G activator, sodium nitroprusside, stimulate only GR-mediated transactivation, in contrast to modulators of other protein kinase pathways that act in parallel on both receptors. The GR-specific effect of okadaic acid is observed only at doses where both phosphatases 1 and 2A are inhibited. MR-specific modulators include a centrally active alpha-2 adrenergic agonist and the thyroid receptor. Comparison of the interaction between the thyroid receptor and the GR, or the MR, distinguish two types of repression, only one of which is receptor-specific. These studies identify several signal transduction pathways that can differentially activate either the MR or the GR at a transcriptional level and might play physiological roles in conferring MR- or GR-specific regulation.