When looking for the possible cause of distortions in values measured for the determination of breath ethanol concentration (BEC) in artificially respirated patients, consideration must be given to the humidity and temperature of the gas examined. In the present study, the effects of humidified and warmed and of dry and cold air on the accuracy of a newly developed BEC measuring device, as compared to a reference model and to a conventional system, were examined in a lung model.
Methods: A temperature-regulated pediatric incubator was used containing a 10 I gas reservoir and a breath humidifier with temperature regulated water bath. This setup provided constant temperature and humidity in the gas examined during measurement period. In the 'expiration' the air was directed from the breath humidifier through a measuring unit via a 'mouthpiece' into the reference system (Alcotest 7110, Dräger Inc., Lübeck) and then out. The measuring unit consisted of sensors for the temperature and relative humidity, and of a connector for the three sample extraction systems (PES). PES I was the conventional system with a 100-cm gas-sample pipe (Alcomed 3010), PES II the newly developed system (AlcoMed 3011, both from Envitec, Wismar) with a 10-cm gas-sample pipe, and PES III with a 20-cm heated gas-sample pipe. During 'inspiration' 2 l of air was fed into the system to rinse the measuring unit and to fill the reservoir. 61 measurements were performed with dry and cold air, and 71 with humidified and warmed air, in the course of which the ethanol concentration was increased from 0 to 1.5/1000. Data were evaluated using regression analysis and the Bland & Altman method.
Results and conclusions: The constancy of the values set for temperature, relative humidity and absolute humidity in the lung model was given for all measurements. In the dry and cold air, the results from all three test systems coincided almost perfectly with the reference values. The measured BEC in the humidified and warmed air using sample-extraction systems II and III corresponded to a high degree with the reference, while in the case of PES I, only a moderate linear correlation was achieved. The temperature and humidity of the expired gas during artificial respiration influence the gas samples extracted for the purposes of BEC measurement. Newly developed sample-extraction systems II and III coincide with the reference system, even under respiration-simulated gas conditions.