It is well established that severe hypertrophy induces metabolic and structural changes in the heart which result in enhanced susceptibility to ischemic damage during cardioplegic arrest while much less is known about the effect of cardioplegic arrest on moderately hypertrophied hearts. The aim of this study was to elucidate the differences in myocardial high energy phosphate metabolism and in functional recovery after cardioplegic arrest and ischemia in mildly hypertrophied hearts, before any metabolic alterations could be shown under baseline conditions. Cardiac hypertrophy was induced in rats by constriction of the abdominal aorta resulting in 20% increase in heart weight/body weight ratio (hypertrophy group) while sham operated animals served as control. In both groups, isolated hearts were perfused under normoxic conditions for 40 min followed by infusion of St.Thomas' Hospital No. 1 cardioplegia and 90 min ischemia at 25 degrees C with infusions of cardioplegia every 30 min. The changes in ATP, phosphocreatine (PCr) and inorganic phosphate (Pi) were followed by 31P nuclear magnetic resonance (NMR) spectroscopy. Systolic and diastolic function was assessed with an intraventricular balloon before and after ischemia. Baseline concentrations of PCr, ATP and Pi as well as coronary flow and cardiac function were not different between the two groups. However, after cardioplegic arrest PCr concentration increased to 61.8+/-4.9 micromol/g dry wt in the control group and to 46.3+/-2.8 micromol/g in hypertrophied hearts. Subsequently PCr, pH and ATP decreased gradually, concomitant with an accumulation of Pi in both groups. PCr was transiently restored during each infusion of cardioplegic solution while Pi decreased. PCr decreased faster after cardioplegic infusions in hypertrophied hearts. The most significant difference was observed during reperfusion: PCr recovered to its pre-ischemic levels within 2 min following restoration of coronary flow in the control group while similar recovery was observed after 4 min in the hypertrophied hearts. A greater deterioration of diastolic function was observed in hypertrophied hearts. Moderate hypertrophy, despite absence of metabolic changes under baseline conditions could lead to enhanced functional deterioration after cardioplegic arrest and ischemia. Impaired energy metabolism resulting in accelerated high energy phosphate depletion during ischemia and delayed recovery of energy equilibrium after cardioplegic arrest observed in hypertrophied hearts could be one of the underlying mechanisms.