Caspases play a major role in the transduction of the apoptotic signal and execution of apoptosis in mammalian cells. Ectopic overexpression of the short prodomain caspases-3 and -6 precursors in mammalian cells does not induce apoptosis. This is due to their inability to undergo autocatalytic processing/activation and suggests that they depend on the long prodomain caspases for activation. To investigate directly the apoptotic activity of these two caspases in vivo, we engineered constitutively active recombinant caspases-3 and -6 precursors. This was achieved by making contiguous precursor caspases-3 and -6 molecules, which have their small subunits preceding their large subunits. Unlike their wild type counterparts, these recombinant molecules were capable of autocatalytic processing in an in vitro translation reaction, suggesting that they are catalytically active. They were also capable of autoprocessing and inducing apoptosis in vivo independent of the upstream caspases. Furthermore, their autocatalytic and apoptotic activities were inhibited by the pancaspase inhibitor z-VAD-fluoromethylketone, but not by CrmA or Bcl-2, thus directly demonstrating that the targets of inhibition of apoptosis by CrmA and Bcl-2 are upstream of caspases-3 and -6. Since caspases-3 and -6 are the most downstream executioners of apoptosis, the constitutively active versions of these caspases could be used at very low concentrations in gene therapy model systems to induce apoptosis in target tissues or tumors.