Nitric oxide-related cyclic GMP-independent relaxing effect of N-acetylcysteine in lipopolysaccharide-treated rat aorta

Br J Pharmacol. 1998 Mar;123(6):1221-9. doi: 10.1038/sj.bjp.0701737.

Abstract

1. We have recently demonstrated the formation of protein-bound dinitrosyl-iron complexes (DNIC) in rat aortic rings exposed to lipopolysaccharide (LPS) and shown that N-acetylcysteine (NAC) can promote vasorelaxation in these arteries, possibly via the release of nitric oxide (NO) as low molecular weight DNIC from these storage sites. The aim of the present study was to investigate further the mechanism of the relaxation induced by NAC in LPS-treated vessels. 2. In rings incubated with LPS (10 microg ml(-1) for 18 h) and precontracted with noradrenaline (NA, 3 microM) plus N(omega)-nitro-L-arginine methylester (L-NAME, 3 mM), the relaxation evoked by NAC (0.1 to 10 mM) was abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 microM, a selective inhibitor of soluble guanylyl cyclase) but not affected by Rp-8-bromoguanosine 3'5'-cyclic monophosphorothioate (Rp-8BrcGMPS, 60 microM a selective inhibitor of cyclic GMP-dependent protein kinase). Tetrabutylammonium (TBA, 3 mM, as a non selective K+ channels blocker) or elevated concentration of external KCl (25 or 50 mM) significantly attenuated the NAC-induced relaxation. Selective K+ channels blockers (10 microM glibenclamide, 0.1 microM charybdotoxin, 0.5 microM apamin or 3 mM 4-aminopyridine) did not affect the NAC-induced relaxation. The relaxing effect of NAC (10 mM) was not associated with an elevation of guanosine 3':5' cyclic monophosphate (cyclic GMP) in LPS-treated rings. 3. In aortic rings precontracted with NA (0.1 microM), low molecular weight DNIC (with thiosulphate as ligand, 1 nM to 10 microM) evoked a concentration-dependent relaxation which was antagonized by ODQ (1 microM) and Rp-8BrcGMPS (150 microM) but not significantly affected by TBA (3 mM) or by the use of KCl (50 mM) as preconstricting agent. The relaxation produced by DNIC (0.1 microM) was associated with an 11 fold increase in aortic cyclic GMP content, which was completely abolished by ODQ (1 microM). 4. Taken together with our previous data, the main finding of the present study is that the vascular relaxation induced by NAC in LPS-treated aorta, although probably related to NO through an interaction via preformed NO stores, was not mediated by activation of the cyclic GMP pathway. It may involve the activation of TBA-sensitive K+ channels. The differences in the mechanism of relaxation induced by NAC and by exogenous DNIC suggest that the generation of low molecular weight DNIC from protein-bound species does not play a major role in the NAC-induced relaxation observed in LPS-treated rat aorta. In addition, it is suggested that ODQ may display other properties than the inhibition of soluble guanylyl cyclase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcysteine / pharmacology*
  • Animals
  • Aorta, Thoracic / drug effects*
  • Aorta, Thoracic / physiology
  • Cyclic GMP / physiology*
  • In Vitro Techniques
  • Iron Compounds / metabolism
  • Lipopolysaccharides / pharmacology*
  • Male
  • Muscle Relaxation / drug effects
  • Nitric Oxide / physiology*
  • Rats
  • Rats, Wistar

Substances

  • Iron Compounds
  • Lipopolysaccharides
  • Nitric Oxide
  • Cyclic GMP
  • Acetylcysteine