Background: Disagreement exists among decision makers regarding the allocation of limited HIV patient care resources and, specifically, the comparative value of preventing opportunistic infections in late-stage disease.
Methods: A Monte Carlo simulation framework was used to evaluate a state-transition model of the natural history of HIV illness in patients with CD4 counts below 300/mm3 and to project the costs and consequences of alternative strategies for preventing AIDS-related complications. The authors describe the model and demonstrate how it may be employed to assess the cost-effectiveness of oral ganciclovir for prevention of cytomegalovirus (CMV) infection.
Results: Ganciclovir prophylaxis confers an estimated additional 0.7 quality-adjusted month of life at a net cost of $10,700, implying an incremental cost-effectiveness ratio of roughly $173,000 per quality-adjusted life year gained. Sensitivity analysis reveals that this baseline result is stable over a wide range of input data estimates, including quality of life and drug efficacy, but it is sensitive to CMV incidence and drug price assumptions.
Conclusions: The Monte Carlo simulation framework offers decision makers a powerful and flexible tool for evaluating choices in the realm of chronic disease patient care. The authors have used it to assess HIV-related treatment options and continue to refine it to reflect advances in defining the pathogenesis and treatment of AIDS. Compared with alternative interventions, CMV prophylaxis does not appear to be a cost-effective use of scarce HIV clinical care funds. However, targeted prevention in patients identified to be at higher risk for CMV-related disease may warrant consideration.