Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution

Nature. 1998 Apr 23;392(6678):835-9. doi: 10.1038/33959.

Abstract

The calcium pump from sarcoplasmic reticulum (Ca2+-ATPase) is typical of the large family of P-type cation pumps. These couple ATP hydrolysis with cation transport, generating cation gradients across membranes. Ca2+-ATPase specifically maintains the low cytoplasmic calcium concentration of resting muscle by pumping calcium into the sarcoplasmic reticulum; subsequent release is used to initiate contraction. No high-resolution structure of a P-type pump has yet been determined, although a 14-A structure of Ca2+-ATPase, obtained by electron microscopy of frozen-hydrated, tubular crystals, showed a large cytoplasmic head connected to the transmembrane domain by a narrow stalk. We have now improved the resolution to 8A and can discern ten transmembrane alpha-helices, four of which continue into the stalk On the basis of constraints from transmembrane topology, site-directed mutagenesis and disulphide crosslinking, we have made tentative assignments for these alpha-helices within the amino-acid sequence. A distinct cavity leads to the putative calcium-binding site, providing a plausible path for calcium release to the lumen of the sarcoplasmic reticulum.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Calcium-Transporting ATPases / chemistry*
  • Crystallography
  • Image Processing, Computer-Assisted
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Conformation
  • Rabbits
  • Rats
  • Saccharomyces cerevisiae
  • Sarcoplasmic Reticulum / chemistry*
  • Sheep

Substances

  • Calcium-Transporting ATPases