Differential response of glomerular epithelial and mesangial cells after subtotal nephrectomy

Kidney Int. 1998 May;53(5):1389-98. doi: 10.1046/j.1523-1755.1998.00871.x.

Abstract

Recent studies in both human and experimental chronic renal disease suggest that there is a linkage between glomerular hypertrophy and glomerulosclerosis. To further define these relationships, we studied the changes in glomerular hypertrophy, procollagen alpha 1(IV) mRNA levels and glomerulosclerosis in rats undergoing 1 2/3 nephrectomy (Nx) or sham nephrectomy (SNx). Glomerular hypertrophy, measured biochemically by RNA/DNA and protein/DNA ratios, was significantly increased in Nx compared to SNx two days after subtotal renal ablation (RNA/DNA: Nx = 133 +/- 8%, SNx = 100 +/- 3% of the mean control value, P < 0.01; protein/DNA: Nx = 164 +/- 22%, SNx = 100 +/- 10%, P < 0.05) and remained elevated after 7 and 15 days (RNA/DNA: seven days Nx = 155 +/- 3%, SNx = 100 +/- 13%, P < 0.01; 15 days Nx = 303 +/- 21%, SNx = 100 +/- 24%, P < 0.001; protein/DNA: seven days Nx = 228 +/- 57%, SNx = 100 +/- 18%, P < 0.05; 15 days Nx = 341 +/- 23%, SNx = 100 +/- 18%, P < 0.01). Light microscopic measures of glomerular tuft volume (GTV) were too insensitive to detect glomerular enlargement until 15 days postoperatively, but GTV measured ultrastructurally demonstrated a 20% increment in Nx compared to SNx as early as two days postoperatively (P < 0.01). The latter increment in GTV was due exclusively to glomerular visceral epithelial cell (GVEC) expansion. Glomerular procollagen alpha 1(IV) mRNA levels were significantly elevated only 15 days after nephrectomy (Nx = 265 +/- 58% of the mean control value, SNx = 100 +/- 12%, P < 0.05; corrected for beta-actin mRNA levels). As this time, exuberant mesangial expansion measured ultrastructurally contributed to a 1.6 +/- 0.1-fold increase in GTV (P < 10(-5)), and to a relative decrement in the GVEC contribution to glomerular cells plus matrix (P < 0.01). Segmental sclerosis was observed only 15 days postoperatively in Nx (Nx = 1.3 +/- 0.4% of glomeruli evaluated, SNx = 0.0%, P < 0.05), and there was a strong correlation between the prevalence of segmental sclerosis and the procollagen alpha 1(IV) mRNA levels in Nx at 15 days (r = 0.93, P < 0.01). There was no significant correlation between the RNA/DNA and protein/DNA ratios and procollagen alpha 1(IV) mRNA levels. Thus, glomerular regions responded differentially to subtotal nephrectomy. Early epithelial cell expansion was followed by later mesangial expansion. Glomerular procollagen alpha 1(IV) mRNA levels were elevated only during the second (mesangial) phase of glomerular hypertrophy, when it correlated with glomerulosclerosis, but not during the initial (epithelial) phase, a pattern consistent with a mesangial origin of the procollagen alpha 1(IV) mRNA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • DNA / metabolism
  • Epithelial Cells / metabolism
  • Epithelial Cells / pathology
  • Glomerular Mesangium / metabolism
  • Glomerular Mesangium / pathology*
  • Glomerulonephritis / etiology
  • Glomerulonephritis / pathology
  • Humans
  • Hypertrophy
  • Kidney Glomerulus / metabolism
  • Kidney Glomerulus / pathology*
  • Male
  • Nephrectomy* / adverse effects
  • Procollagen / genetics
  • Proteins / metabolism
  • RNA / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Procollagen
  • Proteins
  • RNA, Messenger
  • RNA
  • DNA