The blockade of B7, using B7 antagonists such as anti-CD80 and/or -CD86 mAbs or CTLA4Ig in vivo, has been shown to induce an efficient suppression of T cell-mediated immune responses in allograft, allergy, and autoimmune models. However, this treatment does not result in complete tolerance. In this study, we examined CD28-B7-independent activation pathways in the pathogenesis of graft-vs-host disease (GVHD) using allogeneic T cells from CD28-deficient mice. Acute GVHD was induced in the absence of CD28 on donor T cells and its manifestations were obvious in the lymphoid tissues. The CD28-independent GVHD was significantly improved by treatment with anti-CD40 ligand (CD40L) mAb. In contrast, treatment with anti-CD80 plus anti-CD86 mAbs exacerbated the clinical manifestations of GVHD and increased the T cell response against host alloantigen, resulting in the expression of CTLA4, CD40L, and CD25 on splenic T cells. These data suggested that the CD40L-CD40 pathway significantly contributed to the CD28-independent pathogenesis of acute GVHD, whereas the CTLA4-B7 pathway acted protectively in the development of GVHD. These results imply that selectively blockading CD28, instead of disrupting both CD28 and CTLA4, would be a better therapeutic strategy for GVHD. Additionally, the simultaneous use of CD40 antagonists may be advantageous.