TF-1/TPO cells are derived from an erythroleukemia cell line, TF-1, and are absolutely dependent on either TPO or granulocyte-macrophage colony-stimulating factor (GM-CSF)/interleukin-3 (IL3) for their continuous growth and survival. To gain insight into the molecular basis of hemopoietic activities shared by TPO and GM-CSF/IL3 in TF-1/TPO cells, we studied the cross-talk between signal transduction pathways elicited by these cytokines. Stimulation of TF-1/TPO cells with TPO resulted in tyrosine phosphorylation of the TPO receptor (c-Mpl) as well as the common beta subunit (beta c) of GM-CSF/IL3 receptor complex. GM-CSF, however, induced tyrosine phosphorylation of beta c but not c-Mpl. TPO-induced tyrosine phosphorylation of beta c was time- and dose-dependent. We next examined whether or not TPO-induced tyrosine phosphorylation of beta c led to recruitment of SH2-containing molecules such as Stat5 and Shc. While GM-CSF caused association of Stat5 and Shc with beta c, TPO caused association of Stat5, but not Shc, with beta c, suggesting that TPO and GM-CSF may not induce phosphorylation of the same sets of tyrosine residues in beta c. These results suggest that activation of c-Mpl affects the signaling pathway of GM-CSF/IL3 but not vice versa.