We show that major chromosomal rearrangements can occur upon T-DNA transformation of Arabidopsis thaliana. In the ACL4 line, two T-DNA insertion loci were found; one is a tandem T-DNA insert in a head-to-head orientation, and the other is a truncated insert with only the left part of the T-region. The four flanking DNA regions were isolated and located on the Arabidopsis chromosomes; for both inserts, one side of the T-DNA maps to chromosome 2, whereas the other side maps to chromosome 3. Both chromosome 3 flanking regions map to the same location, despite a 1.4-kb deletion at this point, whereas chromosome 2 flanking regions are located 40 cM apart on the bottom arm of chromosome 2. These results strongly suggest a reciprocal translocation between chromosomes 2 and 3, with the breakpoints located at the T-DNA insertion sites. The interchanged fragments roughly correspond to the 20-cM distal ends of both chromosomes. Moreover, a large inversion, spanning 40 cM on the genetic map, occurs on the bottom arm of chromosome 2. This was confirmed by genetic analyses that demonstrated a strong reduction of recombination in the inverted region. Models for T-DNA integration and the consequences for T-DNA tagging are discussed in light of these results.