We showed before that in neonatal rat cardiac myocytes partial inhibition of Na+/K+-ATPase by nontoxic concentrations of ouabain causes hypertrophic growth and transcriptional regulations of genes that are markers of cardiac hypertrophy. In view of the suggested roles of Ras and p42/44 mitogen-activated protein kinases (MAPKs) as key mediators of cardiac hypertrophy, the aim of this work was to explore their roles in ouabain-initiated signal pathways regulating four growth-related genes of these myocytes, i.e. those for c-Fos, skeletal alpha-actin, atrial natriuretic factor, and the alpha3-subunit of Na+/K+-ATPase. Ouabain caused rapid activations of Ras and p42/44 MAPKs; the latter was sustained longer than 90 min. Using high efficiency adenoviral-mediated expression of a dominant-negative Ras mutant, and a specific inhibitor of MAPK kinase (MEK), activation of Ras-Raf-MEK-p42/44 MAPK cascade by ouabain was shown. The effects of the mutant Ras, an inhibitor of Ras farnesylation, and the MEK inhibitor on ouabain-induced changes in mRNAs of the four genes indicated that (a) skeletal alpha-actin induction was dependent on Ras but not on p42/44 MAPKs, (b) alpha3 repression was dependent on the Ras-p42/44 MAPK cascade, and (c) induction of c-fos or atrial natriuretic factor gene occurred partly through the Ras-p42/44 MAPK cascade, and partly through pathways independent of Ras and p42/44 MAPKs. All ouabain effects required extracellular Ca2+, and were attenuated by a Ca2+/calmodulin antagonist or a protein kinase C inhibitor. The findings show that (a) signal pathways linked to sarcolemmal Na+/K+-ATPase share early segments involving Ca2+ and protein kinase C, but diverge into multiple branches only some of which involve Ras, or p42/44 MAPKs, or both; and (b) there are significant differences between this network and the related gene regulatory pathways activated by other hypertrophic stimuli, including those whose responses involve increases in intracellular free Ca2+ through different mechanisms.