Purpose and methods: Multiple strategies are currently being used to manage patients who present with indeterminate solitary pulmonary nodules (SPN). We have used decision-analysis models to assess the cost-effectiveness of various strategies for the diagnosis and management of SPN. Four decision strategies were compared: a wait and watch strategy, a surgery strategy, a computed tomography (CT)-based strategy, and a CT-plus-positron emission tomography (PET) strategy. An incremental cost-effectiveness ratio (ICER) was used to compare all strategies to the wait and watch strategy.
Results: A CT-plus-PET strategy was the most cost-effective over a large pretest likelihood (probability of having a malignant nodule), with a range of 0.12 to 0.69. Furthermore, within this likelihood range, the potential cost savings of using the CT-plus-PET strategy over the CT strategy ranged from $91 to $2,200 per patient. This translates to a yearly national savings of approximately $62.7 million.
Conclusion: Decision-analysis modeling indicates the potential cost-effectiveness of [18F]2-fluoro-2-deoxy-D-glucose (FDG)-PET in the management of SPN. Furthermore, the decision trees developed can be used to model various features of the management of SPN, including modeling the cost-effectiveness of other newly emerging technologies.