FACS-based isolation of slowly growing cells: double encapsulation of yeast in gel microdrops

Nat Biotechnol. 1996 Jul;14(7):884-7. doi: 10.1038/nbt0796-884.

Abstract

Isolating hyperproducing cells is important in biotechnology, but these cells usually grow slowly and can be overgrown by poorly producing cells. We describe a new method of isolating slowly growing cells from among rapidly growing cells, which has the potential for automation and high throughput (e.g., 100,000 cells/h). A model system is presented consisting of a mixed population of slowly growing mutant and rapidly growing wild-type yeast, which were encapsulated in double agarose gel microdrops (dGMDs); with most dGMDs initially containing single cells. Double encapsulation locates parent cells near dGMD centers, making microcolony measurement more accurate. After a 15-h incubation, fluorescent activated cell sorting was used to analyze and sort dGMDs with small microcolonies (slow growers) from dGMDs with large microcolonies (rapid growers). Successful isolation of slow growers from a mixed population of predominantly rapidly growing Saccharomyces cerevisiae cells was achieved.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Division
  • Cell Separation
  • Flow Cytometry
  • Fluorescent Dyes
  • Saccharomyces cerevisiae / cytology*

Substances

  • Fluorescent Dyes