We demonstrate that physiological concentrations of HDL3 inhibit the thrombin-induced platelet fibrinogen binding and aggregation in a time- and concentration-dependent fashion. The underlying mechanism includes HDL3-mediated inhibition of phosphatidylinositol 4,5-bis-phosphate turnover, 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate formation, and intracellular calcium mobilization. The inhibitory effects of HDL3 on inositol 1,4,5-tris-phosphate formation and intracellular calcium mobilization were abolished after covalent modification of HDL3 with dimethylsuberimidate. Furthermore, they could be blocked by calphostin C and bis-indolylmaleimide, 2 highly selective and structurally unrelated protein kinase C inhibitors. However, the inhibitory effects of HDL3 were not blocked by H89, a protein kinase A inhibitor. In addition, HDL3 failed to induce cAMP formation but stimulated the phosphorylation of the protein kinase C 40- to 47-kD major protein substrate. We observed a close temporal relationship between the HDL3-mediated inhibition of thrombin-induced inositol 1,4,5-tris-phosphate formation, intracellular calcium mobilization, and fibrinogen binding and the phosphorylation of the protein kinase C 40- to 47-kD major protein substrate. Taken together, these findings indicate that the HDL3-mediated inhibition of thrombin-induced fibrinogen binding and aggregation occurs via inhibition of phosphatidylinositol 4,5-bis-phosphate turnover and formation of 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate. Protein kinase C may be involved in this process.