Vascular smooth muscle cell hypertrophy and proliferation may participate in the pathophysiology of cardiovascular disease. The analysis of changes in gene expression in vascular smooth muscle cells is crucial to the understanding of the molecular biology of cardiovascular disease. An effective method for analysis of gene expression is the differential display approach. Applying the differential display approach, we identified a gp130RB13-6-related gene in vascular smooth muscle cells following stimulation with platelet-derived growth factor-BB and angiotensin II. It is well known that gp130RB13-6 is a phosphodiesterase/nucleotide pyrophosphatase. Northern blotting and reverse transcriptase-polymerase chain reaction analysis revealed a dramatic down-regulation of the gp130RB13-6-related mRNA after six hours of stimulation of the cells with both agonists. Recently, gp130RB13-6 was identified as a rat neural differentiation and tumor cell surface plasma membrane glycoprotein. These findings demonstrate that the expression of gp130RB13-6 mRNA in vascular smooth muscle cells is remarkably regulated by growth factors and therefore may play an important role in the regulation of vascular smooth muscle cell growth.