The authors present an algorithm utilizing Markov random field modeling for identifying lung regions in a digitized chest radiograph (DCR). Let x represent the classifications of each pixel in a DCR as either lung or nonlung. We model x as a realization of a spatially varying Markov random field. This model is developed utilizing spatial and textural information extracted from samples of lung and nonlung region-types in a training set of DCRs. With this model, the technique of Iterated Conditional Modes is used to determine the optimal classification of each pixel in a DCR. The algorithm's ability to identify lung regions is evaluated on a testing set of DCRs. The algorithm performs well yielding a sensitivity of 90.7% +/- 4.4%, a specificity of 97.2% +/- 2.0%, and an accuracy of 94.8% +/- 1.6%. In an attempt to gain insight into the meaning and level of the algorithm's performance numbers, the results are compared to those of some easily implemented classification algorithms.