The major histocompatibility complex (MHC) class II-associated invariant chain (Ii) contains signals for transport to endocytic compartments where the class II molecules bind antigenic peptides for presentation to CD4+ T cells. Two leucine-based signals in the Ii cytoplasmic tail can be independently recognized for endosomal sorting of Ii, and we have recently shown that each signal is sufficient for basolateral sorting and internalization of Ii in polarized Madine Darby Canine Kidney (MDCK) II cells. The recognition motif for endosomal sorting is complex and consists of two critical leucine-like residues as well as surrounding amino acids. Here, we have analyzed the importance of residues surrounding the membrane-distal leucine-based signal in basolateral sorting and internalization of Ii in MDCK II cells. We find that the DDQxxLI motif is involved in both sorting events indicating the presence of similar signal recognition components both at the TGN and at the plasma membrane. The identical motif is required for endosomal localization and internalization of Ii also in simian COS cells and the human HeLa and M1 cells.