Connexin43(Cx43) channels can be regulated by a variety of factors, including low pHi. Structure/function studies from this laboratory have demonstrated that pH gating follows a particle-receptor mechanism, similar to the "ball-and-chain" model of voltage-dependent inactivation of ion channels. The question whether the particle-receptor model is applicable only to pH gating or to other forms of Cx43 regulation as well remains. To address this question, we looked at the uncoupling effects of insulin and of insulin-like growth factor-1 (IGF) on Cx43 channels expressed in Xenopus oocytes. These agonists do not induce changes in pHi. Junctional conductance (Gj) was measured by the dual 2-electrode voltage-clamp technique. Control studies showed that relative Gj did not change spontaneously as a function of time. Continuous exposure of Cx43-expressing oocytes to insulin (10 micro/L) led to a decrease in Gj. After 80 minutes, Gj was 54+/-5% from control (n= 12). Exposure of oocytes to IGF (10 nmol/L) caused an even more pronounced change in Gj (37+/-4% of control, n=6). The time course of the IGF-induced uncoupling was similar to that observed after insulin exposure. The effect of insulin was abolished by truncation of the carboxyl-terminal domain of Cx43 at amino acid 257 (M257). Interestingly, as in the case of pH gating, coexpression of the carboxyl-terminal domain (amino acids 258 to 282) together with M257 rescued the ability of insulin to reduce coupling (Gj, 39+/-12% from control; n=6). Structure/function experiments using various deletion mutants of the carboxyl-terminal domain showed that insulin treatment does not modify Gj if amino acids 261 to 280 are missing from the Cx43 sequence. Our results suggest that a particle-receptor (or ball-and-chain) mechanism, similar to that described for pH gating, also applies to chemical regulation of Cx43 by other factors.