Transcription factor RTEF-1 mediates alpha1-adrenergic reactivation of the fetal gene program in cardiac myocytes

Circ Res. 1998 Jul 13;83(1):43-9. doi: 10.1161/01.res.83.1.43.

Abstract

Alpha1-adrenergic receptor stimulation induces cardiac myocytes to hypertrophy and reactivates many fetal genes, including beta-myosin heavy chain (betaMyHC) and skeletal alpha-actin (SKA), by signaling through myocyte-specific CAT (M-CAT) cis elements, binding sites of the transcriptional enhancer factor-1 (TEF-1) family of transcription factors. To examine functional differences between TEF-1 and related to TEF-1 (RTEF-1) in alpha1-adrenergic reactivation of the fetal program, expression constructs were cotransfected with betaMyHC and SKA promoter/reporter constructs in neonatal rat cardiac myocytes. TEF-I overexpression tended to transactivate a minimal betaMyHC promoter but significantly interfered with a minimal SKA promoter. In contrast, RTEF-1 transactivated both the minimal betaMyHC and SKA promoters. TEF-1 and RTEF-I also affected the alpha1-adrenergic response of the betaMyHC and SKA promoters differently. TEF-1 had no effect. In contrast, RTEF-1 potentiated the alpha1-adrenergic responses of the SKA promoter and of a -3.3-kb betaMyHC promoter. To determine why the promoters responded differently to TEF-1 and RTEF-1, promoters with mutated M-CAT elements were tested in the same way. The betaMyHC promoter required an intact M-CAT element to respond to TEF-1 and RTEF-1, whereas the SKA promoter M-CAT was required for the TEF-1 response but not for the RTEF-1 response, suggesting that SKA promoter-specific cofactors may be involved. By competition gel shift assay, the M-CAT of the minimal betaMyHC promoter had a lower affinity than that of the SKA promoter, which partly explains the different responses of these promoters to TEF-1. These results highlight functional differences between TEF-1 and RTEF-1 and suggest a novel function of RTEF-1 in mediating the alpha1-adrenergic response in hypertrophic cardiac myocytes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actins / genetics
  • Adrenergic alpha-Agonists / pharmacology
  • Animals
  • Animals, Newborn
  • Bone and Bones / metabolism
  • Chloramphenicol O-Acetyltransferase / genetics
  • DNA-Binding Proteins / metabolism
  • Fetus / physiology*
  • Gene Expression Regulation / physiology*
  • Muscle Proteins / metabolism
  • Muscle Proteins / physiology*
  • Mutation / genetics
  • Myocardium / cytology*
  • Myosin Heavy Chains / genetics
  • Nuclear Proteins*
  • Promoter Regions, Genetic / drug effects
  • Promoter Regions, Genetic / physiology
  • Rats
  • Receptors, Adrenergic, alpha / physiology*
  • TEA Domain Transcription Factors
  • Trans-Activators / metabolism
  • Trans-Activators / physiology*
  • Transcription Factors / metabolism

Substances

  • Actins
  • Adrenergic alpha-Agonists
  • DNA-Binding Proteins
  • Muscle Proteins
  • Nuclear Proteins
  • Receptors, Adrenergic, alpha
  • TEA Domain Transcription Factors
  • TEAD1 protein, human
  • TEAD4 protein, human
  • Trans-Activators
  • Transcription Factors
  • Chloramphenicol O-Acetyltransferase
  • Myosin Heavy Chains