The objective of the present study was to investigate the expression of major xenobiotic-metabolising cytochrome P450 proteins, and of other enzyme systems, in hepatic and extrahepatic tissues of rabbits rendered atherosclerotic by the dietary administration of 1% cholesterol diets for 8 weeks. Individual cytochrome P450 proteins were monitored using diagnostic substrates and immunologically in Western blot analysis. The activity of all hepatic isoforms studied was depressed in the atherosclerotic animals; when, however, apoprotein levels were determined immunologically, no major differences were evident between the control and the atherosclerotic rabbits. In vitro studies indicated that neither cholesterol nor palm oil inhibited cytochrome P450 activity. The effects of cholesterol treatment leading to atherosclerosis on kidney, heart and lung cytochrome P450 activities were isoform- and tissue-specific; no change was evident in the heart activities, but in the lung and kidney cytochrome P450 activities were clearly modulated by the treatment with cholesterol. Apoprotein levels did not always parallel the changes in activities. Western blot analysis of aortic cytochromes P450 revealed that administration of cholesterol-rich diets enhanced CYP2B and CYP3A apoprotein levels. Cholesterol feeding to rabbits gave rise to a marked decrease in hepatic glutathione S-transferase activity but did not influence glutathione reductase or total glutathione levels. The same treatment had no effect on catalase, glutathione peroxidase and superoxide dismutase. It is concluded that treatment of rabbits with cholesterol-rich diets leading to atherosclerosis gives rise to profound changes in the expression of cytochrome P450 proteins in the liver and other tissues; possible mechanisms are discussed.