Angiotensin II stimulates vesicular H+-ATPase in rat proximal tubular cells

Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9665-8. doi: 10.1073/pnas.95.16.9665.

Abstract

Two mechanisms of H+ ion secretion in the proximal tubule that mediate bicarbonate reabsorption have been identified: the brush border Na/H exchanger and electrogenic H+ ion secretion. Angiotensin II (AII) has been shown to be a regulator of the luminal Na+/H+ exchanger and the basolateral Na+/HCO3- cotransporter. In the present study, we examined the effects of AII on H+-ATPase activity in isolated proximal tubule fragments. H+-ATPase activity was assessed by monitoring intracellular pH after Na+ removal from the bath. In addition, we investigated the effects on pH recovery of the proton pump inhibitor bafilomycin A1, removal of Cl-, and of colchicine. pH was continuously measured with the pH-sensitive fluorescent dye 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Recovery of cell pH was observed in the absence of external Na+ and was significantly accelerated by AII. The AII-stimulated pH recovery was completely abolished by bafilomycin A1, by removal of Cl-, by NPPB [5-nitro-2-(3-phenylpropylamino)-benzoate; a potent Cl- channel blocker], and by colchicine. We conclude from these studies that AII stimulates proton extrusion via H+-ATPase by a Cl--dependent process involving brush border insertion of vesicles. This process may contribute to up-regulation of HCO3- reabsorption along the proximal tubule when tubules are exposed to AII.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Angiotensin II / pharmacology*
  • Animals
  • Enzyme Activation
  • Hydrogen-Ion Concentration
  • Ion Transport
  • Kidney Tubules, Proximal / drug effects*
  • Kidney Tubules, Proximal / enzymology
  • Kidney Tubules, Proximal / metabolism
  • Microvilli / drug effects
  • Microvilli / enzymology
  • Microvilli / metabolism
  • Proton-Translocating ATPases / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Sodium / metabolism

Substances

  • Angiotensin II
  • Sodium
  • Proton-Translocating ATPases