Corneal development requires the production, assembly and sometimes replacement of a number of collagenous matrices. The embryonic chick cornea is well-characterized and offers certain advantages for studying the assembly and roles of these matrices. We will first describe the matrices to be examined. These include the corneal stroma proper, first formed as the primary stroma and subsequently as the secondary (mature) stroma; Bowman's Membrane; Descemet's Membrane; and the hemidesmosome of the epithelial cell attachment complex. We will then describe the characteristics of the collagen types involved, including: the fibrillar collagens (types I, II and V), the fibril-associated collagens (types IX, XII and XIV), and the transmembrane collagen of the hemidesmosome (type XVII). Then, in each subsequent section we will examine in detail the structure, assembly and development of each collagenous matrix, and how each specific collagen and/or combination of collagens are thought to provide the matrices with their unique properties. The work and views presented here are largely from our own laboratories. Thus, this article is not meant to be a comprehensive review of the literature. For pertinent references by others, when possible, we will cite recent reviews.