As a first step to gain insight into the structure of the rotavirus virion at atomic resolution, we report here the expression, purification, and crystallization of recombinant rotavirus protein VP6. This protein has the property of polymerizing in the form of tubular structures in solution which have hindered crystallization thus far. Using a combination of electron microscopy and small-angle X-ray scattering, we found that addition of Ca2+ at concentrations higher than 100 mM results in depolymerization of the tubes, leading to an essentially monodisperse solution of trimeric VP6 even at high protein concentrations (higher than 10 mg/ml), thereby enabling us to search for crystallization conditions. We have thus obtained crystals of VP6 which diffract to better than 2.4 A resolution and belong to the cubic space group P4132 with a cell dimension a of 160 A. The crystals contain a trimer of VP6 lying along the diagonal of the cubic unit cell, resulting in one VP6 monomer per asymmetric unit and a solvent content of roughly 70%.