Cervical carcinomas develop as a result of multiple genetic alterations. As the genetic alterations are the cause of malignant transformation, it is likely that specific genetic alterations lead to specific clinical behaviour. The aim of this study was (i) to localise chromosome arms that harbour likely tumour-suppressor genes, by analysing loss of heterozygosity (LOH) and (ii) to study the association of LOH with clinicopathological parameters. To define the regions of interest, we studied the presence of loss of heterozygosity at all chromosomes in 67 cervical carcinomas (stages IB and IIA) with 81 polymorphic markers. In addition, all frequent allelic imbalances were correlated with HPV status and clinicopathologic parameters including survival, FIGO-stage, lymph-node metastasis, tumour size, number of mitoses, vaso-invasion and histologic type. LOH at a frequency over 25% was observed at sites on 9 chromosome arms: 3p21, 4p16.1-15, 6p, 6q22.3-23.1, 11q22-24, 15q11-21.1, 17p13.3, 18q22-qter and Xq. LOH of chromosome 6q14-16.2, 6p22 and 17p13 correlated marginally with HPV-16 positivity. LOH on chromosome 3p21 was weakly correlated with high mitotic activity, while LOH on chromosomes 11q23.3, 15q21.1 and 17p13 correlated with low mitotic activity. LOH at chromosome 17p13 associated marginally with FIGO stage I, while LOH at chromosome 15q associated weakly with FIGO stage II. When chromosome 18q showed LOH in the tumour, the patients had decreased survival (p = 0.024). We conclude that, in carcinoma of the uterine cervix, a novel tumour-suppressor gene may be present on chromosome 15q21 and that patients with LOH on chromosome 18q have relatively poor survival (p = 0.025).