DNA-based immunization represents a novel approach for vaccine development. Recombinant DNA techniques are used to clone DNA sequences encoding antigens of choice into eukaryotic expression plasmids, which are readily and economically amplified in bacteria and recovered with a high degree of purity. For immunization, plasmid DNA is either coated onto microscopic gold particles and bombarded into skin using a gene gun or injected into skin or muscle. Expression of administered genes results in the induction of humoral and cellular immune responses against the encoded antigen. DNA immunization is capable of inducing protective immunity in a number of animal models of infectious disease and cancer. Recent studies suggest that antigen-specific cytotoxic T lymphocyte induction occurs through the presentation of appropriate peptides in the context of major histocompatibility complex molecules on bone marrow-derived professional antigen presenting cells. Following DNA inoculation into the skin, Langerhans cells and/or dermal dendritic cells are believed to acquire the newly synthesized antigen, either through direct transfection or via antigen uptake from transfected keratinocytes, and migrate to regional lymph nodes where they stimulate primary T cell responses. The nature of the immune response depends on the route, method, and timing of DNA delivery and can also be influenced by co-delivery of plasmids encoding immunomodulating cytokines like IFN-alpha, IL-2, or IL-12 and costimulatory molecules like B7-1. While many aspects of the biology of cutaneous DNA immunization remain unknown, the skin appears to offer unique potential as a target for DNA-based immunization.