Inhalation of neurokinin (NK) A causes bronchoconstriction in patients with asthma. The NKA-induced bronchoconstriction in isolated human airways is mediated via the NK2 receptor and inhibited by SR 48968, a potent and specific nonpeptide tachykinin NK2 receptor antagonist. In the present study, the effect of orally administered SR 48968 on NKA-induced bronchoconstriction was examined in 12 mild asthmatics. On the screening day and during the study periods, increasing concentrations of NKA (3.3 x 10(-9) to 1.0 x 10(-6) mol x mL(-1)) were inhaled, until the forced expiratory volume in one second (FEV1) and specific airway conductance (sGaw) decreased by at least 20 and 50%, respectively. During the study periods, 100 mg SR 48968 or matched placebo was ingested in a double-blind, randomized, crossover fashion and NKA provocation was performed at 1.5 and 24 h after dosing. At 1.5 h, the mean (SEM) log10 provocative concentration of NKA causing a 20% fall in FEV1 (PC20 FEV1) was -6.25 (0.20) after SR 48968 and -6.75 (0.17) after placebo (p=0.05); the mean log10 provocative concentration of NKA causing a 35% fall in sGaw (PC35 sGaw) was -7.02 (0.28) after SR 48968 and -7.64 (0.19) after placebo (p=0.05). At 24 h, the mean log10 PC20 FEV1 was -6.21 (0.17) after SR 48968 and -6.65 (0.11) after placebo (p=0.05); the mean log10 PC35 sGaw was -6.85 (0.23) after SR 48968 and -7.17 (0.15) after placebo (nonsignificant). As PC20 FEV1 and/or PC35 sGaw were not reached in up to 4 patients per SR 48968 group, the differences between SR 48968 and placebo were underestimated. In conclusion, oral treatment with 100 mg SR 48968 caused a significant inhibition of neurokinin A-induced bronchoconstriction in asthmatics. This finding constitutes the first evidence of inhibition of sensory neuropeptide-induced bronchoconstriction by a selective tachykinin receptor antagonist in humans.