The conformation and dynamics of domain III of annexin V was studied by steady-state and time-resolved fluorescence of its single tryptophan residue (Trp187) as a function of pH in the absence of calcium. At neutral pH, the maximum of emission occurs at 326 nm, in agreement with the hydrophobic location of the tryptophan residue seen in the three-dimensional structure. Upon decreasing the pH, a progressive red-shift by about 12 nm of the fluorescence emission spectrum is observed. The effect is complete between pH 6 and 4.5, and most likely involves at least one and maybe two carboxylic group(s). Circular dichroism mesurements give evidence for a preservation of the native folding of the protein in these mild acidic conditions. A fluorescence red-shift of smaller amplitude is also observed at high pH (approximately 11). The aggregation state of the protein is affected by pH: while at neutral pH, the protein is monomeric (rotational correlation time = 14 ns); it forms aggregates larger than a dimer (rotational correlation time > 40 ns) in acidic pH conditions. These results suggest that electrostatic interactions are probably important for the stabilization of the folding of domain III without calcium. The conformational change may be related to the aggregation state of the molecule. Examination of the protein crystal structures with and without calcium ion in domain III shows an interplay of salt bridges implying charged amino acid side chains at the molecule surface of domain III. These observations may provide a further clue to the mechanism of the conformational change of domain III of annexin V induced by high calcium concentrations and interaction at the membrane/water interface.