Only two tumor suppressor gene loci, one on 3p25 and the MEN1 gene on 11q13, have thus far been implicated in the pathogenesis of sporadic human pancreatic endocrine tumors (PETs). A genome-wide allelotyping study of 28 human PETs was undertaken to identify other potential tumor suppressor gene loci. In addition to those on chromosomes 3p and 11q, frequent allelic deletions were identified on 3q (32%), 11p (36%), 16p (36%), and 22q (29%). Finer deletion mapping studies localized the smallest regions of common deletion to 3q27, 11p13, and 16p12.3-13.11. Potential candidate genes at these loci include WT1 (11p13), TSC2 (16p13), and NF2 (22q12), but no known tumor suppressor gene localizes to 3q27. The mean fractional allelic loss among these human PETs is 0.126, and no correlation was observed between allelic loss and clinical parameters, including age, sex, hormonal subtype, and disease stage. These findings highlight novel locations of tumor suppressor gene loci that contribute to the pathogenesis of human PETs, and several of these on 3p, 3q, and 22q are syntenic with loci on mouse chromosomes 9 and 16 that are implicated in a murine transgenic model of PETs.