Protein aggregation is a complex phenomenon that can occur in vitro and in vivo, usually resulting in the loss of the protein's biological activity. While many aggregation studies focus on a mechanism due to a specific stress, this study focuses on the general nature of aggregation. Recombinant human interferon-gamma (rhIFN-gamma) provides an ideal model for studying protein aggregation, as it has a tendency to aggregate under mild denaturing stresses (low denaturant concentration, temperature below the Tm, and below pH 5). All of the aggregates induced by these stresses have a similar structure (high in intermolecular beta-sheet content and a large loss of alpha-helix) as determined by infrared and circular dichroism spectroscopy. Thermally induced and denaturant-induced aggregation processes follow first-order kinetics under the conditions of this study. Spectroscopic and kinetic data suggest that rhIFN-gamma aggregates through an intermediate form possessing a large amount of residual secondary structure. In contrast to the aggregates formed under denaturing stresses, the salted-out protein has a remarkably nativelike secondary structure.