Inside APCs, MHC class II molecules associate with antigenic peptides before reaching the cell surface. This association takes place in compartments of the endocytic pathway, more related to endosomes or lysosomes depending on the cell type. Here, we compared MHC class II transport from endosomal vs lysosomal compartments to the plasma membrane. We show that transport of MHC class II molecules to the cell surface does not depend on the cytosolic domains of the alpha- and beta-chains. In contrast, the stability of the alphabeta-peptide complexes determined the efficiency of transport to the cell surface from lysosomal, but not from endosomal, compartments. In murine B lymphoma cells, SDS-unstable and -stable complexes were transported to the cell surface at almost similar rates, whereas after lysosomal relocalization or in a cell line in which MHC class II molecules normally accumulate in lysosomal compartments, stable complexes were preferentially addressed to the cell surface. Our results suggest that when peptide loading occurs in lysosomal compartments, selective retention and lysosomal degradation of unstable dimers result in the expression of highly stable MHC class II-peptide complexes at the APC surface.