A Monte Carlo simulation of the quality dependence of different TL materials, in the form of discs 3.61 mm in diameter and 0.9 mm thick, in radiotherapy photon beams relative to 60Co gamma-rays has been performed. The beam qualities ranged from 50 kV to 25 MV x-rays. The TL materials were: CaF2, CaSO4, LiF and Li2B4O7. The effects of the dopants on energy deposition in the TL material have also been determined for the highly sensitive LiF:Mg:Cu:P (TLD-100H) and for CaF2:Mn. It was found that there was a significant difference in the quality dependence factor derived from Monte Carlo simulations between LiF and LiF:Mg:Cu:P but not between CaF2 and CaF2:Mn. The quality dependence factors for Li2B4O7 varied from 0.990 +/- 0.008 (1 sd) for 25 MV x-rays to 0.940 +/- 0.009 (1 sd) for 50 kV x-rays relative to 60Co gamma-rays; Monte Carlo simulations were also performed for Li2B4O7 in megavoltage electron beams. For CaF2, the quality dependence factor varied from 0.927 +/- 0.008 (1 sd) for 25 MV x-rays to 10.561 +/- 0.008 (1 sd) for 50 kV x-rays. The figure for CaSO4 ranged from 0.943 +/- 0.008 (1 sd) for 25 MV x-rays to 9.010 +/- 0.008 (1 sd) for 50 kV x-rays. The quality dependence factor for CaF2 increases by up to 5% with depth and by up to 15% with field size for the kilovoltage x-ray beams. For LiF-TLD, however, there was no significant dependence on the field size or depth of irradiation in the kilovoltage energy range.