The matrix (M) and nonstructural (NS) genes of influenza A viruses each encode two overlapping proteins. In the M gene, evolution of one protein affects that of the other. To determine whether or not this evolutionary influence operating between the two M proteins also occurs in the NS gene, we sequenced the NS genes of 36 influenza A viruses isolated from a broad spectrum of animal species (wild and domestic birds, horses, pigs, humans, and sea mammals) and analyzed them phylogenetically, together with other previously published sequences. These analyses enabled us to conclude the following host species-related points that are not found in the other influenza A virus genes and their gene products. (1) The evolution of the two overlapping proteins encoded by the NS gene are lineage-dependent, unlike the M gene where evolutionary constraints on the Ml protein affect the evolution of the M2 protein (Ito et al.. J. Virol. 65 (1991) 5491 5498). (2) The gull-specific lineage contained nonH13 gull viruses and the non-gull avian lineage contained H13 gull viruses, indicating that the gull-specific lineage does not link to the H13 HA subtype in the NS gene unlike findings with other genes. (3) The branching topology of the recent equine lineage (H7N7 viruses isolated after 1973 and H3N8) indicates recent introduction of the NS, M, and PB2 genes into horses from avian sources by genetic reassortment.