Membrane electropermeabilization to small molecules depends on several physical parameters (pulse intensity, number, and duration). In agreement with a previous study quantifying this phenomenon in terms of flow (Rols and Teissié, Biophys. J. 58:1089-1098, 1990), we report here that electric field intensity is the deciding parameter inducing membrane permeabilization and controls the extent of the cell surface where the transfer can take place. An increase in the number of pulses enhances the rate of permeabilization. The pulse duration parameter is shown to be crucial for the penetration of macromolecules into Chinese hamster ovary cells under conditions where cell viability is preserved. Cumulative effects are observed when repeated pulses are applied. At a constant number of pulses/pulse duration product, transfer of molecules is strongly affected by the time between pulses. The resealing process appears to be first-order with a decay time linearly related to the pulse duration. Transfer of macromolecules to the cytoplasm can take place only if they are present during the pulse. No direct transfer is observed with a postpulse addition. The mechanism of transfer of macromolecules into cells by electric field treatment is much more complex than the simple diffusion of small molecules through the electropermeabilized plasma membrane.