Cyclin-dependent kinase 5 (Cdk5) and its neuron-specific regulator p35 are essential for neuronal migration and for the laminar configuration of the cerebral cortex. In addition, p35/Cdk5 kinase concentrates at the leading edges of axonal growth cones and regulates neurite outgrowth in cortical neurons in culture. The Rho family of small GTPases is implicated in a range of cellular functions, including cell migration and neurite outgrowth. Here we show that the p35/Cdk5 kinase co-localizes with Rac in neuronal growth cones. Furthermore, p35 associates directly with Rac in a GTP-dependent manner. Another Rac effector, Pak1 kinase, is also present in the Rac-p35/Cdk5 complexes and co-localizes with p35/Cdk5 and Rac at neuronal peripheries. The active p35/Cdk5 kinase causes Pak1 hyperphosphorylation in a Rac-dependent manner, which results in down-regulation of Pak1 kinase activity. Because the Rho family of GTPases and the Pak kinases are implicated in actin polymerization, the modification of Pak1, imposed by the p35/Cdk5 kinase, is likely to have an impact on the dynamics of the reorganization of the actin cytoskeleton in neurons, thus promoting neuronal migration and neurite outgrowth.