For mapping 5-HT2 receptors in the central nervous system with positron emission tomography (PET), 2,5-dimethyl-3-(4-fluorophenyl)-1-(1-[11C]methyl-4-piperidinyl)-1H-indol e ([11C]Lu29-024) has been prepared. The precursor for the radiosynthesis of [11C]Lu29-024 was obtained in an overall yield of 53% by a convenient five-step synthesis; its reaction with [11C]methyl iodide afforded [11C]Lu29-024 in 35-50% radiochemical yield (decay corrected) in 45 to 50 min with a specific radioactivity ranging from 11 to 15 GBq/micromol. Following i.v. injections into rats, the analysis of plasma samples showed that the metabolism of [11C]Lu29-024 was rapid and extensive (60% of the original tracer was metabolized at 40 min). In contrast, only unmetabolized [11C]Lu29-024 could be detected in brain tissue. These biological results suggest that labeled metabolites have no access to brain tissue and further propose [11C]Lu29-024 as an interesting tool for PET studies of brain 5HT2 receptors.