Dissecting cAMP binding domain A in the RIalpha subunit of cAMP-dependent protein kinase. Distinct subsites for recognition of cAMP and the catalytic subunit

J Biol Chem. 1998 Oct 9;273(41):26739-46. doi: 10.1074/jbc.273.41.26739.

Abstract

The two gene-duplicated cAMP binding domains in the regulatory subunits of cAMP dependent protein kinase are each comprised of an A helix, an eight-stranded beta-barrel, and a B and C helix (1). The A domain is required for high affinity binding to C, while the B domain regulates access to the A domain. Using a combination of a yeast two-hybrid screen coupled with deletion analysis, cAMP binding domain A of RI was dissected into two structurally and functionally distinct subsites, one that binds cAMP and another that binds the C subunit. The minimum stable subdomain required for binding to C in the 1-3 micromolar range is composed of residues 94-169, while residues 236-244, mapped to the C helix of cAMP binding domain A, were defined as a second surface necessary for high affinity (5-10 nanomolar) binding to C. This portion of the C helix, due to its position directly between the two subsites, serves as a molecular switch for either a cAMP-bound conformation or a C-bound conformation and can thus modulate interactions of cAMP binding domain A with cAMP, with C, and with cAMP binding domain B.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Catalytic Domain
  • Cyclic AMP / metabolism*
  • Cyclic AMP-Dependent Protein Kinases / chemistry
  • Cyclic AMP-Dependent Protein Kinases / genetics
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Enzyme Activation
  • Holoenzymes / metabolism
  • Hydrolysis
  • Models, Molecular
  • Molecular Sequence Data
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism

Substances

  • Holoenzymes
  • Recombinant Proteins
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases