Peripheral O2 diffusion does not affect V(O2)on-kinetics in isolated insitu canine muscle

J Appl Physiol (1985). 1998 Oct;85(4):1404-12. doi: 10.1152/jappl.1998.85.4.1404.

Abstract

To test the hypothesis that muscle O2 uptake (V(O2)) on-kinetics is limited, at least in part, by peripheral O2 diffusion, we determined the V(O2) on-kinetics in 1) normoxia (Control); 2) hyperoxic gas breathing (Hyperoxia); and 3) hyperoxia and the administration of a drug (RSR-13, Allos Therapeutics), which right-shifts the Hb-O2 dissociation curve (Hyperoxia+RSR-13). The study was conducted in isolated canine gastrocnemius muscles (n = 5) during transitions from rest to 3 min of electrically stimulated isometric tetanic contractions (200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% peak V(O2)). In all conditions, before and during contractions, muscle was pump perfused with constantly elevated blood flow (Q), at a level measured at steady state during contractions in preliminary trials with spontaneous Q x Adenosine was infused intra-arterially to prevent inordinate pressure increases with the elevated Q x Q was measured continuously, arterial and popliteal venous O2 concentrations were determined at rest and at 5- to 7-s intervals during contractions, and V(O2) was calculated as Q x arteriovenous O2 content difference. PO2 at 50% HbO2 saturation (P50) was calculated. Mean capillary PO2 (Pc(O2)) was estimated by numerical integration. P50 was higher in Hyperoxia+RSR-13 [40 +/- 1 (SE) Torr] than in Control and in Hyperoxia (31 +/- 1 Torr). After 15 s of contractions, Pc(O2) was higher in Hyperoxia (97 +/- 9 Torr) vs. Control (53 +/- 3 Torr) and in Hyperoxia+RSR-13 (197 +/- 39 Torr) vs. Hyperoxia. The time to reach 63% of the difference between baseline and steady-state V(O2) during contractions was 24.7 +/- 2.7 s in Control, 26.3 +/- 0.8 s in Hyperoxia, and 24.7 +/- 1.1 s in Hyperoxia+RSR-13 (not significant). Enhancement of peripheral O2 diffusion (obtained by increased PcO2 at constant O2 delivery) during the rest-to-contraction (60-70% of peak V(O2)) transition did not affect muscle V(O2) on- kinetics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bicarbonates / blood
  • Blood Pressure
  • Carbon Dioxide / blood
  • Diffusion
  • Dogs
  • Female
  • Hyperoxia
  • Kinetics
  • Male
  • Muscle Fatigue
  • Muscle, Skeletal / blood supply
  • Muscle, Skeletal / physiology*
  • Oxygen / blood
  • Oxygen / metabolism*
  • Oxygen Consumption / physiology*
  • Oxyhemoglobins / metabolism*
  • Partial Pressure
  • Vascular Resistance

Substances

  • Bicarbonates
  • Oxyhemoglobins
  • Carbon Dioxide
  • Oxygen