Background: Doppler echocardiography is frequently used to predict filling pressures in normal sinus rhythm, but it is unknown whether it can be applied in sinus tachycardia, with merging of E and A velocities. Tissue Doppler imaging (TDI) can record the mitral annular velocity. The early diastolic velocity (Ea) behaves as a relative load-independent index of left ventricular relaxation, which corrects the influence of relaxation on the transmitral E velocity.
Methods and results: We evaluated 100 patients 64+/-12 years old with simultaneous Doppler and invasive hemodynamics. Mitral inflow was classified into 3 patterns: complete merging of E and A velocities (pattern A), discernible velocities with A dominance (B), or E dominance (C). The Doppler data were analyzed at the mitral valve tips for E, acceleration and deceleration times of E, and isovolumic relaxation time. In patterns B and C, the A velocity, E/A ratio, and atrial filling fraction were derived. Pulmonary venous flow velocities were also measured, and TDI was used to acquire Ea and Aa. Weak significant relations were observed between pulmonary capillary wedge pressure (PCWP) and sole parameters of mitral flow, pulmonary venous flow, and annular measurements. These were better for patterns A and C. E/Ea ratio had the strongest relation to PCWP [r=0.86, PCWP=1.55+1.47(E/Ea)], irrespective of the pattern and ejection fraction. This equation was tested prospectively in 20 patients with sinus tachycardia. A strong relation was observed between catheter and Doppler PCWP (r=0.91), with a mean difference of 0.4+/-2.8 mm Hg.
Conclusions: The ratio of transmitral E velocity to Ea can be used to estimate PCWP with reasonable accuracy in sinus tachycardia, even with complete merging of E and A velocities.