To investigate the mechanism of secretory granule biogenesis in endocrine cells, our laboratory used rat anterior pituitary GH3 cells which secrete growth hormone and prolactin. Here we describe a simple and rapid procedure for generating permeabilized cells to dissect molecular mechanisms involved in nascent secretory vesicle budding from the trans-Golgi network (TGN). Using this system, we demonstrate that vesicle budding is temperature, energy, and cytosol dependent; in addition, cytosol from a variety of cells, including yeast (Saccharomyces cerevisiae), can support vesicle release. The budding of nascent secretory vesicles from the TGN is stimulated by a phospholipase D activity that is associated with Golgi membranes. Our results suggest that phospholipid metabolism plays an important role in the release of nascent secretory vesicles from the TGN.
Copyright 1998 Academic Press.