Cytotoxic T-lymphocytes against malaria and tuberculosis: from natural immunity to vaccine design

Clin Sci (Lond). 1998 Nov;95(5):531-8. doi: 10.1042/cs0950531.

Abstract

1. Mycobacterium tuberculosis and the liver stage of Plasmodium falciparum are intracellular pathogens which are potentially susceptible to cytotoxic T-lymphocytes, a crucial component of the protective immune response to viral infections. Evidence from animal models points to a protective role for cytotoxic T-lymphocytes against M. tuberculosis and P. falciparum, but cytotoxic T-lymphocytes specific for these pathogens have been difficult to identify in man.2. Using a reverse immunogenetic approach, candidate epitopes from selected antigens of P. falciparum and M. tuberculosis were used to detect peptide-specific cytotoxic T-lymphocyte responses in individuals exposed to these pathogens. Cytotoxic T-lymphocyte activity was detected by the 51Cr release cytotoxicity assay and a sensitive ELISPOT assay for single-cell interferon-gamma release.3. In naturally exposed, partially immune Africans in The Gambia, eight largely conserved cytotoxic T-lymphocyte epitopes in P. falciparum, restricted by several different HLA class I alleles, were identified. Several epitopes were also recognized in Tanzanians and cytotoxic T-lymphocytes recognized endogenously processed antigen.4. In tuberculosis patients with HLA-B52, a CD8+ cytotoxic T-lymphocyte epitope was identified in ESAT-6, a secreted antigen specific for M. tuberculosis complex but absent in BCG. Cytotoxic T-lymphocytes exhibited HLA-B52-restricted peptide-specific interferon-gamma release and lytic activity and recognized endogenously processed antigen.5. These studies demonstrate that CD8+ cytotoxic T-lymphocytes specific for mycobacterial and protozoal antigens are induced during natural infections in humans. The identification of these T-cells endorses current strategies to develop cytotoxic T-lymphocyte-inducing vaccines against P. falciparum and M. tuberculosis and highlights candidate antigens for inclusion in subunit vaccines.

MeSH terms

  • Animals
  • Antigens, Bacterial / immunology
  • Antigens, Protozoan / immunology
  • Cytotoxicity Tests, Immunologic
  • Enzyme-Linked Immunosorbent Assay / methods
  • Epitopes / immunology
  • Gambia
  • Humans
  • Interferon-gamma / analysis
  • Malaria / immunology*
  • Malaria / prevention & control
  • Mycobacterium tuberculosis / immunology
  • Plasmodium falciparum / immunology
  • T-Lymphocytes, Cytotoxic / immunology*
  • Tanzania
  • Tuberculosis / immunology*
  • Tuberculosis / prevention & control
  • Vaccines, Synthetic*

Substances

  • Antigens, Bacterial
  • Antigens, Protozoan
  • Epitopes
  • Vaccines, Synthetic
  • Interferon-gamma