Mutations of the gene encoding myosin V can produce a dilute or silvery hair color and various neurologic defects in mice and patients with Griscelli syndrome, leading to speculations that the myosin V motor protein plays a critical role in transporting melanosomes within melanocytes and neurosecretory vesicles within neurons. Therefore, we investigated the in vitro expression of myosin V in cultured normal human melanocytes, keratinocytes, and dermal fibroblasts using reverse transcriptase-polymerase chain reaction and northern blot analysis. Subcellular distribution of myosin V and proximity to actin bundles and melanosomes were determined by double indirect immunofluorescence labeling and immunogold electron microscopy. In all studied cells myosin V is expressed and treatment of melanocytes with the cyclic AMP-inducer 3-isobutyl-1-methylxanthine causes an induction of the myosin V message. In all cells myosin V colocalizes with actin bundles, concentrating in the subcortical cell zone. In the melanocyte it is closely associated with melanosomes. Quantitative analysis of myosin V labeling in melanocytes reveals a significantly higher (p < 0.005) presence of myosin V in the periphery of dendrites. These results suggest that myosin V is important in melanosome transport in human melanocytes. Possible roles in the other skin cells remain to be elucidated.