The gp41 subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein plays a major role in the membrane fusion step of viral infection. The ectodomain of gp41 contains a six-helix structural domain that likely represents the core of the fusion-active conformation of the molecule. A monoclonal antibody (MAb), designated NC-1, was generated and cloned from a mouse immunized with the model polypeptide N36(L6)C34, which folds into a stable six-helix bundle. NC-1 binds specifically to both the alpha-helical core domain and the oligomeric forms of gp41. This conformation-dependent reactivity is dramatically reduced by point mutations within the N-terminal coiled-coil region of gp41 which impede formation of the gp41 core. NC-1 binds to the surfaces of HIV-1-infected cells only in the presence of soluble CD4. These results indicate that NC-1 is capable of reacting with fusion-active gp41 in a conformation-specific manner and can be used as a valuable biological reagent for studying the receptor-induced conformational changes in gp41 required for membrane fusion and HIV-1 infection.