Objectives: We sought to identify the effects of endothelin (ET) subtype-A (ET(A))) receptor blockade during the development of congestive heart failure (CHF) on left ventricle (LV) function and contractility.
Background: Congested heart failure causes increased plasma levels of ET and ET(A) receptor activation.
Methods: Yorkshire pigs were assigned to four groups: 1) CHF: 240 beats/min for 3 weeks; n=7; 2) CHF/ET(A)-High Dose: paced for 2 weeks then ET(A) receptor blockade (BMS 193884, 50 mg/kg, b.i.d.) for the last week of pacing; n=6; 3) CHF/ET(A)-Low Dose: pacing for 2 weeks then ET(A) receptor blockade (BMS 193884, 12.5 mg/kg, b.i.d.) for the last week, n=6; and 4) CONTROL: n=8.
Results: Left ventricle fractional shortening decreased with CHF compared with control (12+/-1 vs. 39+/-1%, p < 0.05) and increased in the CHF/ET(A) High and Low Dose groups (23+/-3 and 25+/-1%, p < 0.05). The LV peak wall stress and wall force increased approximately twofold with CHF and remained increased with ET(A) receptor blockade. With CHF, systemic vascular resistance increased by 120%, was normalized in the CHF/ET(A) High Dose group, and fell by 43% from CHF values in the Low Dose group (p < 0.05). Plasma catecholamines increased fourfold in the CHF group and were reduced by 48% in both CHF/ET(A) blockade groups. The LV myocyte velocity of shortening was reduced with CHF (32+/-3 vs. 54+/-3 microm/s, p < 0.05), was higher in the CHF/ET(A) High Dose group (39+/-1 microm/s, p < 0.05), and was similar to CHF values in the Low Dose group.
Conclusions: ET(A) receptor activation may contribute to the progression of LV dysfunction with CHF.