Traditional T2-based imaging techniques are geared toward imaging long-T2 species. Traditional techniques are, therefore, not optimal in clinical situations where the information of interest lies in the short-T2 species. T2-selective RF excitation (TELEX) is a technique for obtaining a T2-based contrast that highlights short-T2 values while suppressing long-T2 values-opposite to traditional T2 contrast. Previously, TELEX has been demonstrated qualitatively to highlight only very short-T2 values (T2 approximately 0.001 s). When applied to longer T2 values (T2 > or = 0.01 s), TELEX becomes sensitive to deltaB0 non-uniformities. This restricts its application to problems in which the T2 of interest is very short. In this study, TELEX is characterized quantitatively. Furthermore, a bandwidth broadening scheme is developed that reduces the deltaB0 sensitivity of TELEX. This permits the technique to be applied to longer T2 values. The capabilities and limitations of a practical implementation of TELEX are discussed.