Because of their high affinity and selectivity, metalloproteins can be used as transducers in novel sensors, i.e., biosensors, for the determination of trace levels of metal ions in solution. Here, we exploit carbonic anhydrase to determine picomolar to nanomolar concentrations of free transition metal ions by fluorescence anisotropy (polarization) in a reagentless format. Carbonic anhydrase variants engineered with a cysteine replacing a residue chosen near the active site (F131C and H64C) were covalently labeled with derivatives of benzoxadiazole sulfonamide. These labeled variants exhibited changes in anisotropy up to 0.07 upon binding free Cu(II), Co(II), and Zn(II) with apparent Kd's close to the values observed with wild-type apocarbonic anhydrase. The covalent attachment of the label has significant advantages over noncovalent labels we have described previously. Furthermore, the metal ion-dependent anisotropy changes were predictable using simple theory. The results demonstrate that free transition metal ions can be determined at trace levels in aqueous solution using inexpensive instruments.